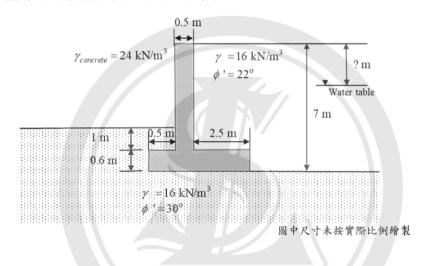
109 年專門職業及技術人員高等考試大地工程學參考解答

- -、針對活動斷層及斷層泥,請說明:(20分)
 - (一)依據經濟部中央地質調查所,說明臺灣之活動斷層如何定義?其如何分類?
 - (二)說明斷層泥之力學性質。當隊道開挖時遭遇斷層泥,其可能產生之影響。

【解題老師】施國欽老師

•109年土木技師試題 •


參考解答

- (一)依中央地質調查所(民國 99 年)之定義為:「十萬年以來曾發生錯移之斷層,稱 為活動斷層」。並將台灣地區的活動斷層分為下列三類:
 - 1. 第一類活動斷層(全新世活動斷層)
 - (1)全新世(距今10,000年內)以來曾經發生錯移之斷層。
 - (2)錯移(或潛移)現代結構物之斷層。
 - (3)與地震相伴發生之斷層(地震斷層)
 - (4)錯移現代沖積層之斷層。
 - (5)地形監測證實具潛移活動性之斷層。
 - 2. 第二類活動斷層(更新世晚期活動斷層)
 - (1)更新世晚期(距今約100,000年內)以來曾經發生錯移之斷層。
 - (2)錯移階地堆積物或台地堆積層之斷層。
 - 3. 存疑性活動斷層(為有可能為活動斷層的斷層,包括對斷層的存在性、活動時 代、及再活動性存疑者):
 - (1)將第四紀岩層錯移之斷層。
 - (2)將紅十緩起伏而錯移之斷層。
 - (3) 地形呈現活動斷層特徵,但缺乏地質資料佐證者。

(二)

- 1. 斷層泥的力學特件:
 - (1)渗透性:渗透性低, 猶如不透水層, 可能使斷層帶兩側的水壓有極大的差異。
 - (2)變形性:岩體變形性大增,且岩體更為不均質,其受力後差異變形性大。
 - (3)剪力強度:岩體強度銳減,使邊坡易滑動,承載力降低,岩體的自立性變低。
- 2. 斷層泥的剪力強度低,易抽心;岩體變形性大,容易產生擠壓變形。其透水性 極低,但是兩側的破碎帶的透水性高,常連涌地下水源成為貯水層。當隧道開 挖面至斷層泥時,使泥層逐漸變薄,最後,水壓力足以衝破斷層泥而發生大量 湧水。

- 二、有一懸臂式擋土牆如圖所示,牆背回填土壤之單位重 $\gamma = 16 \,\mathrm{kN/m^3}$,摩擦角 $\phi' = 22^\circ$ 。牆前土壤之單位重 $\gamma = 16 \,\mathrm{kN/m^3}$,摩擦角 $\phi' = 30^\circ$,地下水位遠低於擋土牆底部。請以Rankine 土壓力理論計算: $(20 \,\mathrm{G})$
 - (一)此牆抗傾倒之安全係數。
 - (二)若牆底於土壤之摩擦角為土壤之2/3,此牆抗滑移之安全係數。
 - (三)由於擋土牆之排水孔失效,導致牆後地下水上升,土壤飽和單位重 $\gamma_{sat} = 19.5 \text{ kN/m}^3$ 。請問當地下水升至距牆背地表多少深度時將發生滑移破壞 (假設牆底抗滑力同(二)顯之結果)?

【解題老師】施國欽老師

•109年土木技師試題•

問題剖析

本題是擋土牆設計的穩定分析,特別注意牆背有地下水時,牆底的水壓力分佈。

參考解答

(一)擋土牆抗傾倒安全係數之計算

$$K_a = \tan^2\left(45^\circ - \frac{22^\circ}{2}\right) = 0.455$$

$$P_a = \frac{1}{2} \gamma H^2 K_a = \frac{1}{2} \times 16 \times 7^2 \times 0.455 = 178.36 \text{ kN/m}$$

擋十牆各區塊作用力之計算

位置	面積(m²)	單位長度重量(kN/m)	力臂(m)	力矩(kN-m/m)
牆身	$0.5 \times 6.4 = 3.2$	$3.2 \times 24 = 76.8$	0.75	57.6
牆基	$0.6 \times 3.5 = 2.1$	$2.1 \times 24 = 50.4$	1.75	88.2
回填土	$2.5 \times 6.4 = 16$	$16 \times 16 = 256$	2.25	576
		$\Sigma V = 383.2$		$\Sigma M_r = 721.8$

抗傾倒
$$FS = \frac{\Sigma M_r}{\Sigma M_d} = \frac{721.8}{178.36 \times \frac{7}{3}} = 1.73 < 2.0$$
 (NG.)

(二)擋十牆抗滑移安全係數之計算

$$FS = \frac{F_r}{F_d} = \frac{\Sigma V \tan \delta}{P_a} = \frac{383.2 \times \tan\left(\frac{2}{3} \times 30\right)}{178.36} = \frac{139.47}{178.36} = 0.78 < 1.5 \text{ (NG.)}$$

(三)擋土牆發生滑移時,地下水位之計算

沒有地下水時,擋十牆抗滑移FS=0.78<1,就可能滑移破壞了。

三、針對一土壤(比重 2.70)進行標準夯實試驗(Standard Proctor Compaction test),其 結果如下所示:(20分)

濕密度γ _m (kg/m³)	1890	2080	2150	2130	1990
含水量(%)	11.3	13.7	14.8	17.1	19.6

- (一)繪製乾密度與含水量關係曲線,求取最大乾密度與最佳含水量。
- (二)繪製無空氣孔隙曲線(Zero air void curve)。
- (三)現地夯實時,欲降低其滲透性,含水量應控制在乾側或濕側?說明其原因。

【解題老師】施國欽老師

•109年土木技師試題。

問題剖析

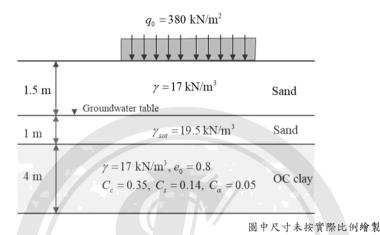
夯實試驗要注意夯實曲線的繪製要領。


參考解答

(一)夯實曲線之繪製,	並求最大乾密度 $FS = 0.2$	78<1及最佳含水量 FS = 0.78<1
 		/ 0 ~ 1 / 文 取 注

$\gamma_m (t/m^3)$	W (%)	$\gamma_d (t/m^3)$	飽和時的 γ_d (t/m ³)
1.890	11.3	1.698	2.069
2.080	13.7	1.829	1.971
2.150	14.8	1.873	1.929
2.130	17.1	1.819	1.847
1.990	19.6	1.664	1.766

註:1.
$$\gamma_d = \frac{\gamma_m}{1+W}$$


2. 飽和時
$$\gamma_d = \frac{\gamma_s}{1+e} = \frac{\gamma_s}{1+G_sW} = \frac{2.7 \times 1}{1+2.7 \times W}$$

從夯實曲線可以求出最大乾密度 $\gamma_{d,\text{max}}$ = 1.884 t/m³,最佳含水量 OMC = 15.4%

- (二)從計算表中,可看出土壤飽和時的乾密度,並繪製無空氣孔隙曲線如圖所示。
- (三)要降低夯實土的滲透性,含水量應控制在 OMC 的濕側,因為濕側屬於分散結構,滲透性較低。

- 四、一地層分佈與性質如圖所示,圖中黏土層(OC clav)之預壓密應力為 75 kN/m^2 ,初 始孔隙比 $e_0 = 0.8$ 。今於此地層之上築一土堤,長度及寬度分別為 15 m 與 5 m,試評 估黏土層之壓密沉陷量:(20分)
 - (一)主要壓密沉陷量。
 - (二)當主要壓密於1年後結束,評估5年後二次壓密沉陷量。

【解題老師】施國欽老師

•109年土木技師試題 •

問題剖析

題目已說明是 OC clay,計算壓密沉陷量時,要研判是純過壓密粘土,還是部份過壓密粘 + .

參考解答

(-)主要壓密沉陷量 ΔH_c 之計算

粘土層中央有效覆土壓力 σ_0

$$\sigma'_0 = 17 \times 1.5 + (19.5 - 9.8) \times 1 + (17 - 9.8) \times 2 = 49.6 \text{ kPa}$$

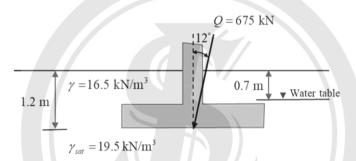
$$\sigma'_0 = 49.6 \,\mathrm{kPa} < \sigma'_c = 75 \,\mathrm{kPa}$$
,:屬於過壓密粘土

假設有限面積加載採用2:1(垂直:水平)向下擴散,

應力增量
$$\Delta \sigma' = \frac{380 \times (5 \times 15)}{(5 + 4.5)(15 + 4.5)} = 153.85 \text{ kPa}$$

最終應力 $\sigma'_1 = 49.6 + 153.85 = 203.45 \text{ kPa} > \sigma'_c = 75 \text{ kPa}$

:.屬於部份過壓密粘土


$$\Delta H_{c} = H_{0} \frac{C_{s}}{1 + e_{0}} \log \frac{\sigma'_{c}}{\sigma'_{0}} + H_{0} \frac{C_{c}}{1 + e_{0}} \log \frac{\sigma'_{1}}{\sigma'_{c}}$$

$$=400 \times \frac{0.14}{1+0.8} \log \frac{75}{49.6} + 400 \times \frac{0.35}{1+0.8} \log \frac{203.45}{75}$$
$$=5.59 + 33.71 = 39.3 \text{ cm}$$

(二)五年後二次壓密沉陷量 △H。之計算

$$\Delta H_s = H_0 \frac{C_\alpha}{1 + e_0} \log \frac{t_s}{t_p} = 400 \times \frac{0.05}{1 + 0.8} \log \frac{5}{1} = 7.77 \text{ cm}$$

五、一正方形基礎座落於土壤中,基礎面在地面下 $1.2 \, \mathrm{m}$,承受一傾斜荷重 $675 \, \mathrm{kN}$,傾斜角度為 12° ,如圖所示。該土壤之濕單位重 $\gamma_m = 16.5 \, \mathrm{kN/m^3}$,飽和單位重 $\gamma_{sat} = 19.5 \, \mathrm{kN/m^3}$ 。地下水位在地面下 $0.7 \, \mathrm{m}$ 。(20 分)

(一)為求取土壤強度參數,進行三個不擾動土壤試體之三軸壓密不排水試驗 (Consolidated Undrained Test),試體破壞時所記錄的應力與孔隙水壓資料如 下表所示。試繪出此土壤之總應力與有效應力破壞包絡線,求取上述基礎設計 所需之莫爾-庫侖(Mohr-Coulomb Criterion)強度參數。

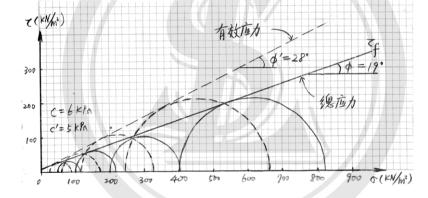
試體編號 $ egin{array}{cccccccccccccccccccccccccccccccccccc$		軸差壓力 $(\sigma_1 - \sigma_3)$	孔隙水壓(u)	
	(kN/m^2)	(kN/m^2)	(kN/m^2)	
1	50	57	21	
2	100	118	40	
3	200	205	82	
4	400	423	158	

(二)若安全係數 FS = 3.0,決定基礎寬度 B 為多少?

参考公式
$$q_{all} = \left(\frac{q_u - q}{FS}\right) + q$$

Shape factors	Depth factors	Inclination factors		
$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	$F_{cd} = 1 + 0.4 \left(\frac{D_f}{B} \right)$	$F_{ci} = F_{qi} = \left(1 - \frac{\beta^{\circ}}{90^{\circ}}\right)^{2}$		
$F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \varphi'$	$F_{qd} = 1 + 2\tan\varphi'(1 - \sin\varphi')^2 \frac{D_f}{B}$	$F_{\gamma i} = \left(1 - \frac{\beta}{\varphi'}\right)^2$		
$F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)$	$F_{\gamma d} = 1$			

ø (度)	N_c	N_q	N_{γ}	ø (度)	N_c	N_q	N_{γ}
23	18.05	8.66	8.20	37	55.63	42.92	66.19
24	19.32	9.60	9.44	38	61.35	48.93	78.03
25	20.72	10.66	10.88	39	67.87	55.96	92.25
26	22.25	11.85	12.54	40	75.31	64.20	109.41
27	23.94	13.20	14.47	41	83.86	73.90	130.22
28	25.80	14.72	16.72	42	93.71	85.38	155.55
29	27.86	16.44	19.34	43	105.11	99.02	186.54
30	30.14	18.40	22.40	44	118.37	115.31	224.64
31	32.67	20.63	25.99	45	133.88	134.88	271.76
32	35.49	23.18	30.22	46	152.10	158.51	330.35
33	38.64	26.09	35.19	47	173.64	187.21	403.67
34	42.16	29.44	41.06	48	199.26	222.31	496.01
35	46.12	33.30	48.03	49	229.93	265.51	613.16
36	50.59	37.75	56.31	50	266.89	319.07	762.89


問題剖析

三軸試驗有四個試體,因考選部所規定的計算機不能迴歸,因此採用作圖方式求強度參數。

參考解答

(一)土壤剪力強度參數之計算

編號	σ_3	$\sigma_1 - \sigma_3$	$\sigma_{ m l}$	$P = \frac{\sigma_1 + \sigma_3}{2}$	$q = \frac{\sigma_1 - \sigma_3}{2}$	и	σ_3'	$\sigma_{ m l}'$	P'	q'
1	50	57	107	78.5	28.5	21	29	86	57.5	28.5
2	100	118	218	159.0	59.0	40	60	178	119	59.0
3	200	205	405	302.5	102.5	82	118	323	220.5	102.5
4	400	423	823	611.5	211.5	158	242	665	453.5	211.5

由圖中求出總應力強度參數 C = 6 kPa, $\phi = 19$ ° 有效應力強度參數 C' = 5 kPa, $\phi' = 28$ °

(二)基礎寬度B之計算

極限承載力 q_u

$$q_u = cN_cF_{cs}F_{cd}F_{ci} + qN_qF_{qs}F_{qi} + \frac{1}{2}\gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

:: C' 值很小,視為粒狀土壤,採用有效應力分析 C' = 5 kPa, $\phi' = 28^{\circ}$,研判為局部剪力破壞

$$C^* = \frac{2}{3}C = \frac{2}{3} \times 5 = 3.33 \,\text{kPa}$$
, $\phi^* = \tan^{-1}\left(\frac{2}{3}\tan 28^\circ\right) = 19.5^\circ$

由於表中無數字可查,因此不考慮局部剪力破壞修正 當 $\phi'=28^\circ$ 時, $N_c=25.8$, $N_q=14.72$, $N_\gamma=16.72$

$$\begin{cases} F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right) = 1 + 1 \times \left(\frac{14.72}{25.8}\right) = 1.57 \\ F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \phi' = 1 + 1 \times \tan 28^\circ = 1.53 \\ F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right) = 0.6 \end{cases}$$

$$\begin{cases} F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right) = 1 + 0.4 \frac{1.2}{B} = 1 + \frac{0.48}{B} \\ F_{qd} = 1 + 2\tan\phi'(1 - \sin\phi')^2 \times \frac{D_f}{B} \\ = 1 + 2\tan28^\circ(1 - \sin28^\circ)^2 \times \frac{1.2}{B} = 1 + \frac{0.36}{B} \\ F_{\gamma d} = 1 \end{cases}$$

$$\begin{cases} F_{ci} = F_{qi} = \left(1 - \frac{12^{\circ}}{90^{\circ}}\right)^{2} = 0.75 \\ F_{\gamma i} = \left(1 - \frac{\beta}{\phi'}\right)^{2} = \left(1 - \frac{12^{\circ}}{28^{\circ}}\right)^{2} = 0.327 \end{cases}$$

$$\begin{split} q_u &= cN_c F_{cs} F_{cd} F_{ci} + qN_q F_{qs} F_{qd} F_{qi} + \frac{1}{2} \gamma BN_\gamma F_{\gamma s} F_{\gamma d} F_{\gamma i} \\ &= 5 \times 25.8 \times 1.57 \times \left(1 + \frac{0.48}{B}\right) \times 0.75 \\ &+ \left(16.5 \times 0.7 + 9.7 \times 0.5\right) \times 14.72 \times 1.53 \times \left(1 + \frac{0.36}{B}\right) \times 0.75 \\ &+ \frac{1}{2} \times 9.7 \times B \times 16.72 \times 0.6 \times 1 \times 0.327 \\ &= \left(151.9 + \frac{72.9}{B}\right) + \left(277 + \frac{99.73}{B}\right) + 15.91B \\ &= 428.9 + 15.91B + \frac{172.63}{B} \\ &\hat{K}$$
 依題意 $q_{all} = \left(\frac{q_u - q}{FS}\right) + q$

$$=\frac{\left(428.9+15.91B+\frac{172.63}{B}\right)-\left(16.5\times0.7+9.7\times0.5\right)}{3}+(16.5\times0.7+9.7\times0.5)$$

$$=\frac{412.5+15.91B+\frac{172.63}{B}}{3}+16.4$$

$$=153.9+5.3B+\frac{57.54}{B}$$

$$\oint \text{NED} q = \frac{V}{A} = \frac{Q\cos12^{\circ}}{B^{2}} = \frac{675\cos12^{\circ}}{B^{2}} = \frac{660.2}{B^{2}}$$

令外應力
$$q = q_a$$

$$\frac{660.2}{B^2} = 153.9 + 5.3B + \frac{57.54}{B}$$

$$660.2 = 153.9B^2 + 5.3B^3 + 57.54B$$

解得 B = 1.84 m